
AIAA-99-4553

SOFTWARE ARCHITECTURE THEMES IN JPL’S MISSION DATA SYSTEM
Daniel Dvorak, Robert Rasmussen, Glenn Reeves, A1 Sacks

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 109-8099

{ dldvorak,rrasmssn,greeves,asacks} @pop.jpl.nasa.gov

ABSTRACT
The rising frequency of NASA mission launches has
highlighted the need for improvements leading to
faster delivery of mission software without sacrificing
reliability. In April 1998 Jet Propulsion Laboratory
initiated the Mission Data System (MDS) project to
rethink the mission software lifecycle-from early
mission design to mission operatiovand make
changes to improve software architecture and software
development processes. As a result, MDS has defined
a unified flight, ground, and test data system
architecture for space missions based on object-
oriented design, component architecture, and domain-
specific frameworks. This paper describes several
architectural themes shaping the MDS design and how
they help meet objectives for faster, better, cheaper
mission software.

BACKGROUND
JPL’s deep space missions tend to be one-of-a-kind,
each with distinct science objectives, instruments, and
mission plans. Until recently, missions were spaced
years apart, with little attention to software reuse,
given the rapid pace of computer technology and
computer science. Also, since radiation-hardened
flight computers remain years behind their commercial
counterparts in speed and memory, flight software has
typically been highly customized and tuned for each
mission. Thus, when JPL launched six missions in six
months between October 1998 and March 1999, it
wasn’t surprising that there was little software reuse
among them, except in the ground system.

However, despite the uniqueness of each mission, they
each had to independently design and develop
mechanisms for communication, commanding,

Copyright 0 1999 by the American Institute of Aeronautics
and Astronautics, Inc. The U.S. Government has a royalty-
free license to exercise all rights under the copyright claimed
herein for Governmental purposes. All other rights are
reserved by the copyright owner.

attitude control, navigation, power management, fault
protection, and many other standard tasks, yet there
was no common architecture or frameworks for them
to draw upon. Clearly, in an era of monthly missions,
this is an inefficient way to use software-engineering
resources.

MISSION DATA SYSTEM
In order to use software-engineering resources more
effectively and to sustain a quickened pace of
missions, JPL initiated a project in April 1998 to
define and develop an advanced multi-mission
architecture for an end-to-end information system for
deep-space missions. The system, named “Mission
Data System” (MDS), is aimed at several institutional
objectives: earlier collaboration of mission, system
and software design; simpler, lower cost design, test,
and operation; customer-controlled complexity; and
evolvability to in situ exploration and other
autonomous applications. JPL’s Telecommunication
and Mission Operations Directorate (TMOD) manages
the MDS project.

This paper describes several architectural themes
shaping the MDS design and how they help meet these
objectives and how they differ from earlier practices.
Although most of these themes have resulted from a
desire to improve flight software-and have
compelling examples there-they apply equally to
ground software. Also, these themes apply equally to
all kinds of robots, whether spacecraft or probes or
rovers.

AN ARCHITECTURAL APPROACH
Theme: Construct subsystems from architectural
elements, not the other way around.

It has been traditional in JPL missions to divide the
work along five dimensions: flight vs. ground vs. test,
design vs. test vs. operations, engineering vs. science,
downlink vs. uplink, and subsystems (navigation vs.
power vs. propulsion vs. telecom, etc). With the work
so compartmentalized, software engineers naturally

1
American Institute of Aeronautics and Astronautics

mailto:pop.jpl.nasa.gov

applied their own customized solutions within each
realm, resulting in minimal reuse and requiring many
iterations at integrating the subsystems. The net result
was always architecture constructed from subsystems.

In MDS there is a quest to find common problems and
create common solutions, and also to tailor general
solutions to particular problems. This quest is driven
by the recognition that managing interactions is the
foundation of good design. For example, different
activities in different subsystems issue commands that
consume power, and they can potentially interfere with
each other unless there is a coordination service that
keeps track of available power and who has authority
to control each device. Creating such a coordination
service enables a cleaner simpler design because it
controls interactions through a common service rather
than through private subsystem-to-subsystem
agreements, thereby decreasing the coupling between
subsystems. It similarly simplifies unit testing of
subsystems. The net result from applying this
approach is that subsystems get constructed from
architectural elements, not the other way around.

GROUND-TO-FLIGHT MIGRATION
Theme: Migrate capability ffom ground to$ight, when
appropriate, to simpllfy operations.

MDS takes a unified view of flight and ground tasks
because of opportunity and need. With increasingly
powerful flight processors the opportunity exists to
migrate to the spacecraft (or rover) some processing
that has traditionally been performed on the ground,
thereby reducing the need for flight-ground
communication. Such migration might occur well after
launch, after ground operators have gained experience
with the real spacecraft and have decided that some
activities can be automated, without further human-in-
the-loop control. More importantly, the need for such
migration exists in order to accomplish missions that
must react quickly to events, without earth-in-the-loop
light-time delays, such as autonomous landing on a
comet and rover explorations on Mars. For these
reasons both flight and ground capabilities must be
designed for a shared architecture.

STATE & MODELS ARE CENTRAL
Theme: System state and models form the foundation
for monitoring and control.

MDS is founded upon a state-based architecture,
where state is a representation of the momentary
condition of an evolving system. System states include
device operating modes, device health states, resource
levels, temperatures, pressures, etc, as well as

environmental states such as the motions of celestial
bodies and solar flux. Some aspects of system state are
best described as functions of other states; e.g.,
pointing can be derived from attitude and trajectory. In
all cases state is accessible through state variables (as
opposed to a program’s local variables), and state
evolution is described on state timelines. State
timelines provide the fundamental coordinating
mechanism since they describe both knowledge and
intent.
A state-based architecture implies the need for models
since models describe how a system’s state evolves.
Together, state and models supply what is needed to
operate a system, predict future state, control toward a
desired state, and assess performance.

EXPLICIT USE OF MODELS
Theme: Express domain knowledge explicitly in
models rather than implicitly in program logic.

Much of what makes software different from mission
to mission is domain knowledge about instruments and
actuators and sensors and plumbing and wiring and
many other things. This knowledge includes
relationships such as how power varies with solar
incidence angle, conditions such as the fact that gyros
saturate above a certain rate, state machines that
prescribe safe sequences for valve operation, and
dynamic models that predict how long a turn will take.
Conventional practice has been to develop programs
whose logic implicitly contains such domain
knowledge, but this expresses the knowledge in a
“hidden” form that is hard to validate and hard to
reuse.

In contrast, MDS advocates that domain knowledge be
represented more explicitly in inspectable models.
Such models can be tables or spreadsheets or rules or
state machines or any of several forms, as long as they
separate the domain knowledge from the general logic
for applying that knowledge to solve a problem. The
task of customizing MDS for a mission, then, becomes
largely a task of defining and validating models.

GOAL-DIRECTED OPERATION
Theme: Operate missions via specijications of desired
state rather than sequences of actions.

Traditionally, spacecraft have been controlled through
linear (non-branching) command sequences that have
been carefully designed on the ground. Such design is
difficult for two reasons. First, ground must predict
spacecraft state for the time at which the sequence is
scheduled to start, and that’s difficult to know with
confidence because of flighdground communication

2
American Institute of Aeronautics and Astronautics

Figure 1. This figure illustrates several MDS architectural themes: the central role of state knowledge
and models, goal-directed operation, closed-loop control, and the separation of state determination from
state control.

limitations (data rate and light-time delay). Second, in
the event that the actual spacecraft state is different
than the predicted state, the sequence should be
designed to fail rather than chance doing something
harmful.

MDS, in contrast, controls stat&oth flight and
ground state-via “goals”. A goal is defined as a
prioritized constraint on the value of a state variable
during a time interval. A goal differs from a command
in that it specifies intent in the form of desired state.
Such goal-directed operation is simpler than traditional
sequencing because a goal is easier to specify than the
actions needed to accomplish it. Importantly, goals
specify only success criteria; they leave options open
about the means of accomplishing the goal and the
possible use of alternate actions to recover from
problems. A goal is a unifying concept that
encompasses daily operations, maintenance and
calibration, resource allocation, flight rules, and fault
responses. Of course, all of this begs the question of
who or what elaborates a goal into a program of
actions, which brings us to closed-loop control and
goal-achieving modules.

CLOSED-LOOP CONTROL
Theme: Design for real-time reaction to changes in
state rather than for open-loop commands or earth-in-
the-loop control.

Goal-directed operation implies closed-loop control. In
MDS a state controller is termed a goal-achieving
module (GAM). A GAM controls state by comparing
present state to desired state, then deciding how to
change the state if necessary, then issuing either sub-
goals to lower-level GAMS or issuing direct low-level
actions (i.e., primitive actions). When a GAM accepts
a goal it must either achieve the goal or responsibly
report that it cannot. A GAM’S logic can be arbitrarily
simple or sophisticated, but it must always keep the
goal issuer informed about the goal’s status.

Most GAMs achieve their goals by issuing sub-goals,
thus creating a hierarchy of GAMs. Naturally, the
bottom layer of GAMS bottoms out in primitive
actions. Importantly, GAMS can report why they acted
as they did in terms of what discrepancies between
state and goals prompted action, and what sub-goals or
commands were issued in response. Also, since GAMs

3
American Institute of Aeronautics and Astronautics

are self-checking by definition, goal failures will be
visible (through goal status) during testing.

INTEGRAL FAULT PROTECTION
Theme: Fault protection must be an integral part of
the design, not an add-on.

Fault protection, which includes fault detection,
localization, and recovery, has often been treated as an
add-on to a basic command & control system. As
such, it was designed after the control system and
arrived later in the project cycle. Such was the case for
the Cassini attitude and articulation control system,
and an interesting thing happened the day that fault
protection was first enabled: numerous faults were
detected in a control system that had already
undergone a fair amount of testing. The Cassini AACS
team learned more in that month than they had in the
previous six months because they finally had
independent detailed monitoring of system behavior.

In MDS fault protection will be an integral part of the
desigw-not an add-oHecause it is an essential part
of robust control and because it is extremely valuable
during system testing. Goal-achieving modules in
MDS need at least some minimum level of fault
detection since they must report when an active goal is
not being achieved. GAMS may also provide recovery
strategies ranging from very simple to very
sophisticated.

REAL-TIME RESOURCE
MANAGEMENT

Theme: Resource usage must be authorized and
monitored by a resource manager.

“Resources” are things like available battery energy,
power, fuel, memory, thermal margin, etc. Overuse of
spacecraft resources can be disastrous, such as
accidentally using too much power near the time of a
critical orbit insertion maneuver, causing the
spacecraft power bus to trip. For reasons like this
ground operators have tended to be very conservative
about resource usage, especially given their time-
delayed knowledge of it. However, such conservative
operation limits the amount of science data acquisition
and return, especially during periods of great
opportunity, such as during a fly-by or a short-lived
science event.

MDS avoids this kind of operational dilemma through
a resource management mechanism that prevents
overuse, even if a resource is accidentally
oversubscribed. Specifically, resource-using activities
are forced obtain a “ticket” in order to use a given

resource, much as one obtains a file descriptor in order
to access a file. An activity must state to a resource
manager the amount of resource and the time interval
when it is needed, and the ticket is issued only if the
usage does not conflict with any other higher-priority
usage. Further, if measurements show that more of a
resource is being used than was ticketed (such as
might occur from an unexplained power drain), the
manager can disable one or more tickets until an
adequate margin is recovered. Because a resource
manager always knows the available amount, other
activities can be triggered to opportunistically use the
resource, thereby increasing science data return.

SEPARATION OF STATE
DETERMINATION AND CONTROL

Theme: For consistency, simplicity and clarity,
separate state determination logic from control logic.

It’s not unusual to see software that co-mingles control
logic with state determination logic, but this practice is
usually a had idea for three reasons. First, if two or
more controllers each make their own private
determination for the same state variable, their
estimates may differ, potentially leading to conflicting
control actions. Second, mixing two distinct tasks in
the same module makes the code harder to understand
and less reusable. Third, these two tasks are an ill fit in
the same module because control has a hierarchical
structure based on delegation of authority whereas
state determination has a network structure based on
pathways of interaction mechanisms (electrical,
thermal, etc.).

Architecturally, MDS separates state determination
from state control, coupled only through state
variables. State determination is a process of
interpreting measurements to generate state
knowledge, and the process may combine multiple
sources of evidence into a determination of state,
supplied to a state variable as an estimate. Control, in
contrast, attempts to achieve goals by issuing
commands and sub-goals that should drive estimated
state toward desired state. Keeping these two tasks
separate simplifies design, programming, and testing,
and also allows for independent improvements.

ACKNOWLEDGE STATE
UNCERTAINTY

Theme: State determination must be honest about the
evidence; state estimates are not facts.

State values are rarely known with certainty, but a lot
of software effectively pretends that they are by

4
American Institute of Aeronautics and Astronautics

treating state estimates as facts. However, disastrous
errors can result when control decisions are based on
highly uncertain state. For example, it is probably
unwise to perform a main-engine burn when the
estimated position of the engine gimbals is below
some minimum certainty. Uncertainty can arise in
several ways, sometimes as conflicting evidence,
sometimes through characteristic degradation of
sensors, and sometimes during periods of rapid
dynamic change.

MDS takes the position that a level of certainty should
accompany every state estimate. State determination
must be honest about what the evidence is telling it. If
there are two credible pieces of evidence that conflict,
and there’s no timely way to reconcile the conflict,
then the resulting state estimate must have an
appropriately reduced level of certainty. Similarly,
control must take into account the certainty level of
the state estimates upon which it is basing a decision.
If certainty drops below some context-specific
minimum, then control must react appropriately,
perhaps by attempting an alternate approach or by
abandoning a goal entirely.

SEPARATION OF DATA
MANAGEMENT FROM DATA

TRANSPORT
Theme: Separate data management duties and
structures from those of data transport.

Flighdground data management has long been tightly
coupled with data transport issues, largely because
such capabilities evolved from a time when flight
processors were extremely limited. This resulted in
application code that was built around the CCSDS
packet format, for example. While such designs had
some justification in the speed and memory constraints
of earlier missions, the time has come to adopt a
cleaner separation and prepare for the day when
spacecraft are in fact nodes in an inter-planetary
network.

MDS clearly distinguishes between data management
and data transport. The former elevates data products
as entities in their own right, as objects and files that
can be updated and summarized and aged, and that
may or may not be destined for ground. In fact, data
management is a service that transcends the flight-
ground divide so that data products are treated
consistently in both places. Data transport, in contrast,
can access any data product and serialize it for
transport between flight and ground. Packet formats
and link protocols are completely hidden from the
level of data management. Decoupling these two

capabilities keeps the design and testing simpler for
each and allows for independent improvements.

JOINING NAVIGATION WITH
ATTITUDE CONTROL

Theme: Navigation and attitude control must build
ffom a common mathematical base.

Navigation and attitude control have been weakly
coupled on most JPL missions because, in empty
space, they operate on vastly different time scales and
their dynamics don’t greatly affect each other. As
such, navigation software and attitude control software
have been developed largely independent development
efforts. In upcoming missions, however, the coupling
becomes much tighter. For example, escape velocity
near an asteroid is so small that firing thrusters for
attitude control can significantly affect trajectory.
Likewise, docking with another vehicle, as in a
sample-return mission, requires navigation and attitude
corrections on similar time scales.

The approach that MDS is taking here, as in other
areas, is to design common architectural mechanisms
for common problems. Since the same forces influence
navigation and attitude control, the architecture must
allow for a common model; since both are solving
geometry problems, the architecture must provide for
common solvers.

UPWARD COMPATIBILITY
Theme: Design interfaces to accommodate foreseeable
advances in technology.

MDS is intended to serve missions for many years to
come, and during that time there will be numerous
advances in software technology for control systems,
fault detection & diagnosis, planning & scheduling,
databases, communication protocols, etc. MDS must
be prepared to exploit such technologies else it will
become an obstacle rather than an enabler for
increasingly challenging missions, but MDS also
needs to maintain some architectural stability to
amortize its cost over its missions. The strategy for
achieving this centers around careful design of
architectural interfaces, behind which a variety of
technical approaches can be used. Specifically, MDS
designers consult with researchers to understand how
software interfaces may need to evolve, and then
implement a restrict subset of an interface using
current mission-ready technology. When the more
advanced technology becomes mission-ready, they
implement the fuller interface in an upward

5
American Institute of Aeronautics and Astronautics

* .

compatible manner, namely, in a manner that still
works for interface clients that use the restricted
subset. Thus, interface client software is not forced to
change on the same schedule as interface provider
software.

The value of upward compatibility is powerfully
illustrated in the history of IBM. In 1964 when IBM
introduced the Systeml360 architecture, they
transformed the computer industry with the first
“compatible” family of computers. Software and
peripherals worked virtually interchangeably on any of
the five original processors, so customer investments
were preserved when they upgraded to a more
powerful processor. IBM continued to improve the
technology over the years, but always within the
Systed360 architecture and its extensions. Although
the MDS architecture applies to a much smaller
marketplace, the benefits of upward compatibility
make sense for MDS customers and providers.

BENEFIT TO MDS CUSTOMERS
The main value of MDS is that it should enable
customer missions to focus on mission-specific design
and development without having to create and test a
supporting infrastructure. Customers will receive a set
of pre-integrated and pre-tested frameworks, complete
with executable example uses of those frameworks
running on a simulated spacecraft and mission. These
frameworks will be based on an object-oriented design
described in Unified Modeling Language (UML)
[OMG, 19971, the lingua franca of MDS software
design and scenario description.

As a project, MDS is balancing a long-term
architectural vision against a near-term commitment to
its first customer mission, Europa Orbiter, scheduled
to launch in 2003. Such commitments help focus MDS
design efforts on pragmatic, well-understood
mechanisms for supporting the architectural themes.

HISTORICAL CONTEXT
In a 1995 joint study between NASA Ames and JPL
known as the New Millennium Autonomy
Architecture Prototype (NewMAAP) a number of
existing concepts for improving flight software were
brought together in a prototype form. These concepts
included goal-based commanding, closed-loop control,
model-based diagnosis, onboard resource
management, and onboard planning. When the Deep
Space One (DS-1) mission was subsequently
announced as a technology validation mission, the

NewMAAP project rapidly segued into the Remote
Agent project [Pell et al, 19971. In May 1999 the
Remote Agent experiment (RAX) flew on DS-1 and
provided the first in-flight demonstration of the
concepts. The MDS project, which is populated with
many people who worked on or with RAX, was
established in April 1998 to define and develop an
advanced multi-mission data system that unifies the
flight, ground, and test elements in a common
architecture. That architecture is shaped with the
themes described in this paper.

ACKNOWLEDGEMENTS
The research and design described in this paper was
carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

REFERENCES
[OMG, 19971 “What is OMG-UML and why is it
important?”, Object Management Group,
htt l , : / /~~~.omg.or~news/~r97/umlprimer.html, 1997.

[Pell et al, 19971 “An Autonomous Spacecraft Agent
Prototype,” B. Pell, D. Bernard, S. Chien, E. Gat, N
Muscettola, P. Nayak, M. Wagner, B. Williams,
Proceedings of the First Annual Workshop on
Intelligent Agents, Marina Del Rey, CA, 1997.

6
American Institute of Aeronautics and Astronautics

